Riemann hypothesis for period polynomials of modular forms.
نویسندگان
چکیده
The period polynomial r(f)(z) for an even weight k≥4 newform f∈S(k)(Γ(0)((N)) is the generating function for the critical values of L(f,s) . It has a functional equation relating r(f)(z) to r(f)(-1/Nz). We prove the Riemann hypothesis for these polynomials: that the zeros of r(f)(z) lie on the circle |z|=1/√N . We prove that these zeros are equidistributed when either k or N is large.
منابع مشابه
An Arithmetic Formula for Certain Coefficients of the Euler Product of Hecke Polynomials
Abstract. In 1997 the author [11] found a criterion for the Riemann hypothesis for the Riemann zeta function, involving the nonnegativity of certain coefficients associated with the Riemann zeta function. In 1999 Bombieri and Lagarias [2] obtained an arithmetic formula for these coefficients using the “explicit formula” of prime number theory. In this paper, the author obtains an arithmetic for...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملAn abundance of invariant polynomials satisfying the Riemann hypothesis
In 1999, Iwan Duursma defined the zeta function for a linear code as a generating function of its Hamming weight enumerator. It can also be defined for other homogeneous polynomials not corresponding to existing codes. If the homogeneous polynomial is invariant under the MacWilliams transform, then its zeta function satisfies a functional equation and we can formulate an analogue of the Riemann...
متن کاملSpectral analysis and the Riemann hypothesis
The explicit formulas of Riemann and Guinand-Weil relate the set of prime numbers with the set of nontrivial zeros of the zeta function of Riemann. We recall Alain Connes’ spectral interpretation of the critical zeros of the Riemann zeta function as eigenvalues of the absorption spectrum of an unbounded operator in a suitable Hilbert space. We then give a spectral interpretation of the zeros of...
متن کاملAlgebraic Twists of Modular Forms and Hecke Orbits
We consider the question of the correlation of Fourier coefficients of modular forms with functions of algebraic origin. We establish the absence of correlation in considerable generality (with a power saving of Burgess type) and a corresponding equidistribution property for twisted Hecke orbits. This is done by exploiting the amplification method and the Riemann Hypothesis over finite fields, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 10 شماره
صفحات -
تاریخ انتشار 2016